
新智元推荐1
来源:科学网
作者:李维
我们 “语义计算” 群在讨论这个句子的句法结构:The asbestos fiber, crocidolite, is unusually resilient once it enters the lungs, with even brief exposures to it causing symptoms that show up decades later, researchers said.
我说,it looks fine in its entirety. “once-clause” has a main clause before it, so it is perfectly grammatical. The PP “with even brief exposures to it” is an adverbial of “causing …”: usually PP modifies a preceding verb, but here it modifies the following ING-verb, which is ok.
然后想到不妨测试了一下我们的 parser,果然,把 PP 连错了,说是 PP 修饰 enters,而不是 causing。除此而外,我的 parse 完全正确。这也许是一个可以原谅的错误。如果要改进,我可以让两种可能都保留。但是统计上看,也许不值得,因为一个 PP 面对前面的一个谓语动词和后面的一个非谓语动词,修饰前者的概率远远大于修饰后者。

张老师问: 是否此句在你的训练集里?如是统计方法。否则太不容易了
我说,我这是语言学程序猿做的规则系统,不是统计方法。句子不在我的 dev corpus 里面。parsing 是一个 tractable task,下点功夫总是可以做出来,其水平可以达到接近人工(语言学家),超越普通人(非语言学家)。说的是自己实践的观察和体会。靠谱的 parsing,有经验的语言学程序猿可以搞定,无需指靠机器学习。为了说明这个观点,我测试了我的汉语 parser:

这个汉语句子的 parsing,只有一个错误,“语言学”与 “程序猿” 之间掉链子了(说明 parsing 还有改进余地,汉语parsing开发晚一些,难度也大一些,当前的状况,掉链子的事儿还偶有发生)。但整体来看基本也算靠谱了。所以,即便是比英语句法更难的汉语,也仍然属于 tractable 人工可以搞定的任务。
语言学家搞不定的是那些千头万绪的任务,譬如语音识别(speech recognition),譬如文章分类 (document classification),譬如聚类习得 (clustering-based ontology acquisition) 。这些在很多个 features 中玩平衡的任务,人脑不够用,见木不见林。但是对于 deep parsing 和 信息抽取,解剖的是一颗颗树,条分缕析,这是语言学家的拿手好戏,都是 tractable 的任务,当然可以搞定。(甭管多大的数据,一句句分析抽取完了存入库里,到retrieve的时候还是需要“挖掘”一番,那时候为了不一叶障目,自然是需要用到统计的)。
在条分缕析的 tractable 任务上(譬如,deep parsing),我的基本看法是:有NLP经验的语言学家立于不败之地。而机器学习,包括深度学习(deep learning,当前呼声最高的机器学习神器),也许在将来的某一天,可以逼近专家水平。值得期待。最多是逼近语言学家,但是要超越人工,我不大相信。再牛的机器学习算法也不可能在所有任务上胜过专家的手工编码,这个观点本来应该是显然的,但是学界的多数人却天然地认为深度学习总是可以超越人工系统。


parser 的直接目标不是语义求解,而是提供一个靠谱的结构基础,这样后续的(语用层面的)语义理解、信息抽取、舆情分析、机器翻译、自动文摘、智能秘书或其他的NLP应用,就可以面对有限的 patterns,而不是无限的线性序列。从这个目标来看,我们的中文英文的 parsers 都已经达标了。
干货下载
1.【华创证券】机械设备:机器人大趋势
2.【东吴证券】大国崛起:中国智造值得中长期布局
3.【广发证券】清洁机器人:旧时王谢堂前燕,飞入寻常百姓家
4.【民生证券】人工智能 + 适合的应用场景
5.【荐书】The Master Algorithm
如何下载?
关注新智元微信订阅号(AI_era),回复“12月下载”即可获得。




